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FORE WORD 

This report presents the results and conclusions obtained 
from a study of various proposed analytical techniques for 
the inflight compensation of gyro drift rates. It was  pre- 
pared in compliance with Contract NAS3-3232. 
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1 -  
SUMMARY 

Four proposed methods to eliminate inflight gyro torquing for gyro drift compensation 
were  examined for equation accuracy and airborne-computer programming require- 
ments. The results in terms of inflight-storage and compute-cycle penalties show 
that the drifted rotating-platform coordinate-system and quasi-linear matrix- 
transformation methods were best. The accuracy of the latter is  limited by initial 
assumptions; therefore, the drifted rotating-platform coordinate-system method, 
being an "exact" method, was  recommended. 

V 
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INTRODUCTION 

The purpose of this study is to perform a detailed analysis of several proposed 
schemes for eliminating inflight gyro torquing as a means of gyro drift compensation. 
The discussions a r e  limited solely to the software aspects of the problem, i. e . ,  guid- 
ance equation accuracy and the airborne-computer programming requirements. 

1 

The various schemes analyzed a r e  designated as: 

Method 1. Matrix transformation. 

Method 2. Drifted rotating-platform coordinate system. 

Method 3.  

Method 4. Guidance parameter biasing. 

Rotating t, n ,  r coordinate system. 

Note that Methods 1, 2, and 3 a re  explicit whereas Method 4 is not. Methods 1, 2 ,  
and 4 were programmed in "engineering" closed-loop guidance simulations on the 
IBM 7094 computer. Only the airborne-computer programming aspects (storage re- 
quirements and effect on length of compute cycle) of Method 3 were appraised. 

The following sections present detailed discussions on the theory and application of 
each of the four methods for the analytical compensation of gyro drift. 

GD/C Memo CGA-319, Status of Inflight Torquing Techniques Study, 12 January 1965 
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m m m  

= m  m m 
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2 1  22 23 

SECTION 1 

MATRIX TRANSFORMATION 

1.1 DISCUSSION. The fundamental technique employed here is simply to transform 
the thrust acceleration vector from the rotating drifted-platform axes (where it is  
sensed) to inertial axes by means of a coordinate transformation matrix M. Thus, the 
thrust acceleration in inertial coordinates is given by 

a T = M a '  T (1-1) 

where, a thrust acceleration in inertial coordinates (u, v, w axes), is 
T' 

a' thrust acceleration in rotating drifted platform coordinates (u: v: w'axes), is T' 

a' = 
T Tv 

and M,  coordinate transformation matrix, is 

r 1 

M 

Integrating Equation 1-1, the thrust velocity is obtained. 

t 

vT = M(t) a; (t) dt 

The change in thrust velocity between time instants ti-l and ti is 

3 
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1 

hvTi = I M(t) a; (t) dt 
J 

ti- 1 

Integrating Equation 1-3 by parts, 
L 

where t 

VT 

Evaluating Equation 1-4 and using the relations 

i 
M(t ) = M(t.) - A M  

i-1 1 

= VI  (t.) - v' (t ) Avki T 1 T i-1 

then, 

(1-3) 

(1-4) 

(1-5) 

i- 1 

Using the mean value theorem of the integral calculus, the last term on the right may 
be expressed as 

+ 
dM 
dt 5 T (  I 

dt = - (t ) VI (t ) At. 

1- 1 

< t. and At. = t. - . Note that there a re  actually three time in- 
i-1 ' t5 1 1 1 ti-l 

where t 
stants, tt , corresponding to each of the three independent components of the vector 
implied by Equation 1-6. However, this is of no significant consequence as will be 
seen below. Now since 

dM - (t ) At. AM 
dt  5 1 i 

Equation 1-5 may be written as  

4 
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- - - - - - - -  

The term enclosed by the dashed box will be negligible for reasonably small values of 
gyro drift rate and compute cycle length. For example, assuming a constant drift 
rate of 5 deg/hr and a 1.5 sec compute cycle, the maximum possible contribution 
(accumulated) for this term is less than 1 ft/sec! Thus, the approximation 

Av = M(ti) Avki Ti 

is sufficiently accurate. 

The M matrix is obviously related to the gyro drift rates. This relationship can be 
found as follows. Differentiating both sides of Equation 1-1 with respect to time, 

Alternately, the vector k may be calculated as 
T 

= M(&' + Qak)  
T T 

where 
w 

dw' dv' -0 

" [ 'dw,/ 1 -:dull 

du' -0 dv 

where r 1 

w 
dw' dv' 0 -0 

0 '= A Iudw,/ -:du'l 

du' -0 dv 

(1-9) 

(1-10) 

(1-11) 

aEd 0 I are the instantaneous drift rates about the u', v', and w' 
du" "dv' ' dw 

and w 
axes respectively. 

Eliminating kT from Equations 1-9 and 1-10, 

( M - M Q ) a '  = O  
T 

Now, since this result is valid for any arbitrary a' T' 

M = Ma 

(1-12) 

(1-13) 

Furthermore, since M is relatively constant during a single compute cycle (at least 
in the present application), a simple integration such as 

5 
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- w d t =  -d A t  -d Av' he,, = -A821 - - dw' 16 17 Tv -I- d18 A v ~ ~  

> 

ti- 1 

- f i  o I dt = -d A t  -d 14 A? Tu -d 15 Avkv AO13 = -AB3, - dv 13 
ti- 1 

=-/i 0 l d t = - d  10 A t - d  11 Av' Tv + d  12  A v k  
du A923 = -A032 

ti- 1 

a d t  = M A@ AM. 1 = M i- 1 f i  i- 1 

t (1-16) 

(1-14) 

i-1 
Jt 

is sufficiently accurate for all practical purposes. The matrix A @  is defined by 

#- 1 

Ae 13 I 
A 0  = 1 AB21 A022 1 (1-15) 

, . . . , d are the familiar gyro drift parameters. 
10'  dll 18  and d 

The integration of the k matrix thus requires the calculation of A 8  12' 
AB,, and then the matrix multiplication Mi-l A @ .  Using the notation 

A0,,, and 

r i  

L J  

and 

AM. 1 = [.mkj] 

the following equations are obtained: 

(1-17) I 
6 
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12 "12 -m13 "13 
Amll = -m 

11 "12 -m13 "23 
Am = m 

Am13 = "13 + m l Z  "23 

12 

Am 21 = -m22 ABl2 -m23 AB,, 

Am22 = m21 Ae12 -m23 "23 

Am23 = m21 "13 +m22 "23 

32 "12 -m33 "13 
Am = - m  

Am 32 = m31 ABl2 -m33 
31 

- 
Am33 - m31 "13 +m32 "23 

(1-18) 

The calculation of AM by means of Equation 1-18 requires 18 distinct multiplications. 
Henceforth, this will be referred to as the "exact" transformation matrix. A s  will be 
shown later, this exact transformation is rather "expensive" from the standpoint of 
airborne-computer storage and compute-cycle requirements. 

A significant saving in the required storage and cycle time can be achieved at the ex- 
pense of a slight decrease in accuracy as follows. 
drift angle will be relatively small, say less  than five degrees, the diagonal elements 
of M do not differ appreciably from unity. Second, again as a consequence of the 
small angle consideration, the off-diagonal elements of M are  approximately anti- 
symmetric. From these considerations , the following "semiexact" calculation of 
AM can be achieved using only nine distinct multiplications. 

Firs t ,  since the total platform 

Amll = -m12 ABl2 -m13 hel3 1 
I Am = ABl2 -m13 AB23 

Am = hel3 +m12 
12 

13 

Am 21 = -ABl2 -m23 Ae13 
Am22 = -m12 ABl2 -m 

Am 23 = he2, -m12 ABl3 

AB 
23 23 

Am 31 = - M l 3 + m  23 "12 
Am 32 = -A623 -m13 ABl2 

Am 
= -m13 ABl3 -m23 Ae23 33 

(1-19) t 



GD I C-BTD65-091 

A further significant saving in the storage- and cycle-time requirements (at the ex- 
pense of accuracy) can be achieved by retaining the second order contributions on the 
diagonal elements only. This method requires only three distinct multiplications. 
The calculation of AM now becomes, 

7 
Am 

Aml2 = bel2 

Am =hel3 

= -m12 AB,, -m13 hel3 11 

13 

Am21 = -hel2 

Am22 = -m12 hel2 -m23 A823 

Am 23 

13 
Am =-A6 

Am32 = -he2, 

Am 33 = -m13 hel3 -m23 A€),, 

31 

(1-20) 

The ultimate simplified form of AM is obviously obtained by retaining only the off- 
diagonal terms. This is equivalent to assuming the total platform drift angle is of 
infinitesimal order. The result is 

A m l l = A m  = A m  = O  
22 33 

Am12=-Am 2 1  = A 8  1 2  

Aml3=-Am 31 = b e  13 
Am =-Am = A 6  23 32 23 

(1-21) 

Thus, the calculation of AM by means of Equation 1-21 requires no multiplications. 
However, as will be shown, its accuracy is severely limited by the very small angle 
assumption. 

The analytical drift compensations as discussed above, i . e . ,  a) exact, b) semiexact, 
c) linear approximation with second order correction to diagonal elements only, and 
d) linear approximation, were programmed in closed-loop engineering guidance simu- 
lations on an IBM 7094 digital computer. Figure 1 presents a flow chart showing the 
"basics" as modified to accomodate Method 1. 

8 
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At ~ t. - t. 1 1-1 

A\,' ~ "' - \.' 
T T Ti-1 

f .  1-1 + c  i-2 

READ VD A N D  to 
FROM SIGhlATOR INTO --C 

WORKING STORAGE 

- 1- 1 f - i  

NOTES: 

t 
~~~ 

(TO CURRENT AC-8 EQUATIONS) 

Figure 1. The Modified Basics for the Matrix Transformation Method 

1 . 2  CONCLUSIONS. 
results obtained from nominal trajectories (dlo, dll, . . . , and dI8 = 0) with the re- 
sults obtained from trajectories incorporating maximum-specification gyro drift 
rates,  i. e . ,  f 3 deg/hr and f 3 deg/hr/g. The following conclusions were reached: 

The accuracy of Method 1 was appraised by comparing the 

a. Both the exact and semiexact matrix transformations result in negligible guidance 
e r ro r s .  

The linear approximation incorporating second order corrections (quasi-linear 
approximation) to the diagonal elements only is adequate for direct-ascent missions. 
The resulting midcourse correction requirement (MCR) is approximately 1 m/sec. 

The linear approximation is only adequate for gyro drift rates on the order of 
1 deg/hr and 1 deg/hr/g o r  less.  The residual e r ro r  (MCR) increases approxi- 
mately as the square of the gyro drift rates. Thus, if the MCR resulting from 
gyro drift rates of 1 deg/hr is 1 m/sec, the MCR resulting from 3 deg/hr drift 
rates would be about 9 m/sec. 

b. 

c .  

9/10 



GD IC-BTD65-091 

SECTION 2 

DRIFTED ROTATING-PLATFORM COORDINATE SYSTEM 

2.1 DISCUSSION. 
computations in rotating (noninertial) platform coordinates. This reference frame is 
defined by the instantaneous orientation of the accelerometer input axes (corrected for 
nonorthogonality) . The required kinematic relationships are 

The technique employed here is simply to perform the guidance 

- - - d r  
- -  - r + w  Xv = v  
dt m d m m  

d i  
- = i + a  x i  
dt a d a  

m :  

- - a 

d where the operator dt denotes differentiation with respect to fixed or  inertial axes and 
the dot (*  ) operator denotes differentiation with respect to the rotating platform axes. 
The angular velocity of the rotating-platform axes, wd, is given by 

1 ' + 0  ' 1 ' f O  ' 1  dv v dw w' = Odu' d 

where 
I =  d + d  a ,-d a 

du 10 11 Tv 12 Tu' 

= -d -d a -d a * dv' 13 14 Tu' 15 Tv' 

-d a 
odw'= d16 + d17 aTv' 18 Tw' 

m d3 

dt The total vehicle acceleration, - , is given by 

dv m -  
dt T 
- -  - a  +;* 

(2-3) I 
(2 -4) 

where a is the thrust acceleration and ;* is the gravitational acceleration, including 
the effects of accelerometer bias and input axis misalignment. The unit target vector 
as seen by the inertial observer is fixed (constant) in direction. Therefore, 

- = 0. Equation 2-1 can now be expressed as 

T 

a 
dt 

d i  

11 
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READ io AND b 
FROM SIGMATOR INTO 
WORKING STORAGE 

- - - - - v = a  + g * - ~  Xvm 

r = v  - W  X r  

m T  d 

m m d m  
- - - - 

- -  
A v T  = v T - "Ti -1  t. = t 

I O  
fi- l-fi-2 T 

- 
f - f .  

1 = - W d X l a  a 

It will be noted here that the three vector cross  products in Equation 2-5 require 
eighteen distinct multiplications. It will be recalled that this is the same number of 
discrete multiplications required in the exact calculation of the AM matrix. 
Equation 1-18. ) However, Method 1 requires an additional matrix vector multiplication 
(M(ti) Avhi) which necessitates nine further discrete multiplications! Note also that 
the vector components of aT are  inherently in the correct coordinate system and can 
therefore be utilized directly; e. g. , the integral of ZT (performed automatically by 
the integrating (pulse-rebalanced) accelerometers) is exactly what is required for 
integrating the first of Equations 2-5 in the rotating-platform coordinate system. 

(See 

This technique of analytically compensating for gyro drift was programmed in a closed- 
loop engineering guidance simulation mechanized on the IBM 7094 digital computer. 
Figure 2 is a flow chart showing the modified basics required for this scheme. 

I I 
I 

AT T I 
I 

a =- 
T A t  

d10 - d  a 
= f 1 3 - d  11 a T v  - d12 aTu ) I 

d 14 T u - d 1 5  I 
d16 + dli a T v  - dB aTIV I 

- -  
a = - - w  x v  
w d m  

k ;  = (aT + g* + a ,) /it 
m 

m m m  
= -a - -  x r  

o d m  

y - - Y  +LLv 

- -  
LLr = (vm * ~ ~ ) L i t  

m 

r 
m 

m 
1 :- 

r r  

- _ - - - - - - - - I  --------- L -  ------ 
g = Q 1 ,  I I 

2 K; I 
I 

I 

- = I  - h  I 
I 

I 
I 

I I 

h i  ~ - W  x i  A t  
a d a  

a a a  

h - v  - 2 -  
m m r  

I i - 7  + A i  

2 - -  I a 2  T = iT.  iT I 
v = v  ' V  

m m m  

t 
(TO CURRENT AC-8 EQUATIONS) 

Figure 2. The Modified Basics for the Drifted Rotating- 
Platform Coordinate System Method 

1 2  
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, 

2 . 2  CONCLUSIONS. This technique is very accurate and relatively economical for 
airborne-computer requirements, Guidance system inaccuracy attributable to this 
scheme is essentially zero. Furthermore, from a practical point of view, there 
appears to be no limitations on its applicability. For example, there a re  no small- 
angle assumptions involved. Intuitively, it seems that the optimum reference frame 
for navigational computation would be the reference frame in which the thrust acceler- 
ation is sensed. 

13/14 
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SECTION 3 

ROTATING t, n, r COORDINATE SYSTEM 

3 . 1  DISCUSSION. The technique employed here is fundamentally similar to that 
discussed in Section 2.  That i s ,  the navigational calculations are again performed 
in a rotating {noninertial) coordinate system. This coordinate system, herein referred 
to as the t, n ,  r coordinate system, is defined by the instantaneous position and 
velocity of the vehicle. The orientation of the t, n,  r axes is defined by the unit 
vectors i 1 and i as follows: t 

- 

(3-1) 

- r’ n’ 
r 1 = -  

r r  
- 

- 
1 x s  
li x i 1  

r 

r 

n r  

- 
1 =  
n 

- - - 
It = 1 X l  

Note that the position vector has only one nonzero component when referred to the 
t, n,  r axes. Thus, 

Further, note that the velocity vector has only two nonzero components when referred 
to the t, n,  r axes. Thus, 

v = v  1 + v l  r r  t t  

The required kinematic relationships are 

& I - -  
- =  V f W X V  
dt 

d i  . 
-- - I  + ; x i  a -  
dt  a a 

(3-3) 

, (3-4) 

d 
where the o p e r a b r x  denotes differentiation with respect to fixed o r  inertial axes and 
the dot ( * )  operator denotes differentiation with respect to the rotating t, n,  r axes. 
Here, w is the angular velocity of the t, n,  r reference frame with respect to an in- 
ertial frame. Expressed in t ,  n,  r coordinates, w is given by 

15 
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The components of the angular velocity vector 0 can be determined as follows. 
Differentiate the first of Equations 3-1, 

- - 
dlr 1 dr  r dr 

V =ti 
r t  

r 
Now , the derivative - is also given by dt 

r -  d l  

dt r r 
- -  - 1 + S ; x i  

Equating coefficients in Equations 3-6 and 3-7, one obtains 

t 0 = -  
n r 

V 

0 = o  
t 

NOW, differentiate the second of Equations 3-1, 

r - -  d i  - - d i  
- -  

d - -  X v + l  x- 1, X v n 
d i  

- - lir x t ; l  dt dt r dt 
-12 dt (ir x V l  

- -  
d; - d - 

X v + l  x-- 1 - (ir X V I  r dt n dt 
1 - - 

lir x i (  

The derivative of X I can be calculated as r 

(3-5) 

(3-6) 

(3-7) 

(3-9) 
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2 

d i )  X v + l  x- - - l n ’  (dir  dt - - r dt 
- 

Substituting this result  into the right-hand side of Equation 3-9, one obtains 

- -  - -  
where I =  i i + 1 1 + 1 1 is the unit dyad. 

Now , 
t t  n n  r r  

-v v r -  t -  - - t r -  
1 

d l  
- x v  = -1  X ( v 1  + v  1 ) = -  dt r t t t  r r  r n  

V 

- - - - - - dv 
1 x - =  l r X ( a T + g ) = - a  1 + a  1 r dt Tn t Tt n 

t 
lir x V l =  v 

which, upon substituting into the right hand member of Equation 3-11, yields 

a n Tn - d i  
- = -- 

v It t dt 

Also, since 

d i  
- -  - G x i n  
dt 

(3-10) 

(3-11) 

(3-12) 1. 
(3- 13) 

(3-14) 

17 
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I 

a 
Tn then 

- - -  
O r  V 

> 

J 

t (3-17) 

t 

Thus, the components of w may be expressed as 

= o  

t 
n r  

V 
= -  

a 
Tn 

&J = -  
r v  t 

(3- 15) 

(3-16) 1 
Using Equations 3-16, Equations 3-4 may be written in the following scalar form: 

t V = a  - O V  
Tt n r 

= a  - g + W  V t r Tr n t  

E = v  r 

1 -  - 0  1 at - wrlan n ar 

- i = - a i  an r at 

i = w l  ar n at 

Before integrating Equations 3-17, it is necessary to determine the thrust acceleration 
vector aT referred to the t,  n, r coordinate system. Therefore, we require a trans- 
formation matrix which will transform the thrust acceleration vector from platform 
coordinates (where it is actually measured) to t, n, r coordinates. This % matrix is 
obtained in the same manner as was explained in detail above for Method 1. Thus 
Equation 1-18 is also applicable here if we define the AB'S a s  follows: 

- 

(3-18) I 
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and udr a re  the components of the platform drift rate referred to the 
*dt’ *dn’ d 
t ,  n, r coordinate axes. Using matrix notation, 

(3-19) 

where * * 

- d  a - d  a 
14 Tu 15 Tv (3-20) 

* The acceleration components a* a* and a a re  the thrust acceleration com- 

ponents (platform axes), corrected for scale factor, bias, and misalignments. 
Tu’ Tv’ Tw 

Finally, it must be noted that the reference attitude vector T * ,  being calculated in t ,  
n, r coordinates, must ultimately be transformed back to platform coordinates in 
order to steer the vehicle. 

This method was not programmed since it was fairly obvious that the airborne- 
computer storage requirements would be excessive. However, the storage require- 
ments and compute-cycle degradation were accurately estimated for comparison pur- 
poses. Figure 3 presents a flow chart reflecting the modified basics used for the 
rotating t, n, r coordinate system navigational computations. 

3 . 2  CONCLUSIONS. This method, although probably workable, results in almost 
precisely the same airborne-computer storage and compute-cycle penalties a s  does 
the exact matrix transformation (Method 1). The integration of the equations of motion 
and the attitude reference vector calculations a r e  much simpler than the corresponding 
calculations required in the other methods. However , since the accelerometer outputs 
must be transformed from the drifting platform reference axes to the rotating t ,  n, r 
coordinate system (and back again for steering!), there is a significant net penalty 
involved. 

19 
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READ \b AND 17 
FROM SIGMATOR MTO --C 

WORKING STORAGE 
1 0  

BASIC EQUATIONS 

ht ~ ti - t ,- l  

, , I  

T ~ 'T - "Ti-1 L V  

c .  -+f 

f - f  

1-1 1-2 

i- 1 

I I 

T - - - - - -  - T - - - - - - - -  
I-- - - - - 7 - - J  ----- 

M+-M + A M  

- 
= M a* T 

Tr 

k r = v  A t  
r 

r c r  - A r  

dn 

dr 

w =  d 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

1 - 1  + A 1  
a a a  

w 
n 

w 
r 

2 
V 

h 

' c = I - h  

I a 2  = a  a 
I 

T T T  

I 

I 
I 

a 
T 

'aT = (aTI 

Figure 3.  The Modified Basics for the Rotating t, n,  r 
Coordinate System Method 
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Figure 3. The Modified Basics for the Rotating t, n, r 
Coordinate System Method (Continued) 
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SECTION 4 

GUIDANCE PARAMETER BIASING 

The method employed here is essentially identical to the current technique of biasing 
the trajectory dependent guidance parameters to account for the effects of the oblate- 
ness of the earth, etc. In effect, targeting is done using a drifting (rotating) platform. 
Thus, the polynomials for  the calculation of 1 , hd, C1, . . . , and C are 1 , 1 au' av aw 5 

dll, . . . , and d 
10'  18. also functions of d 

The feasibility of this method was analyzed and verified by employing an engineering 
closed-loop guidance simulation mechanized on the IBM 7094 digital computer. This 
technique, although perfectly accurate, is quite "expensive" from the standpoint of 
additional targeting and the subsequent curve fitting required. 

In addition, the airborne-computer storage penalty is rather severe. In fact, it appears 
that the only distinct advantage to be offered by this method is that the inflight compute 
cycle remains unchanged. 
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SECTION 5 

CONCLUSIONS AND RECOMMENDATIONS 

Each of the various proposed techniques for analytically compensating for the effects 
of inflight gyro drift rates was verified to be feasible. Also, there does not appear to 
be any significant trade-off as far as accuracy is concerned since the residual e r r o r  
(MCR) resulting from the use of each method is essentially zero (the quasi-linear 
matrix transformation method is an exception for worst-case gyro drift rates). Thus, 
the ultimate basis for comparison of the different methods should be based on their 
respective airborne-computer programming requirements. The following table pre- 
sents a summary of the inflight-storage and compute-cycle penalties corresponding to 
each method using the current AC-8 guidance equations as a common reference. 

INCREASE IN DRUM INCREASE 
METHOD REV0 LUTIONS IN CELLS REMARKS 

1 (Exact) 10.9 64 

1 (Semiexact) 6.2 46 

1 (Quasi-linear) 2.6 8 Includes second order corrections 
to diagonal elements only. 
Limited to very small angles. 

2 6 .2  16 

3 11.5 63 

4 0 >162 Does not include the additional 
cells required for numerically 
evaluating polynomials ! 

It should be pointed out that the estimates presented above assume perfect program- 
ming optimization, The actual values will be somewhat higher. The comparison, how- 
ever, is still valid. 

From the results presented in the table, it is apparent that the technique employing 
the quasi-linear matrix transformation requires minimum airborne computer storage 
and results in the shortest inflight compute-cycle length. However, the requirements 
utilizing Method 2, the drifted rotating-platform coordinate system, are  not significantly 
different. h view of this fact and also since Method 2 consitutes an exact method, it is 
recommended that Method 2 be chosen as the best technique for analytical inflight gyro 
drift rate compensation. 
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